National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Role of PsbO isoforms in Arabidopsis thaliana
Svoboda, Václav ; Duchoslav, Miloš (advisor) ; Knoppová, Jana (referee)
Role of PsbO isoforms in Arabidopsis thaliana Abstract Photosystem II (PSII) uses sunlight to catalyze water oxidation and reduce plastoquinone. Water oxidation takes place in oxygen evolving complex (OEC). OEC is stabilized by extrinsic subunits of PSII. The largest and most important of them is PsbO, manganese-stabilizing protein which can be found in all known oxygenic photosynthetic organisms. Model plant Arabidopsis thaliana expresses two isoforms of psbO gene, namely PsbO1and PsbO2.Mutants psbo1 and psbo2 lacking PsbO1 and PsbO2, respectively, recently brought new findings on the particular roles of isoforms in maintaining photosynthesis. PsbO1 is commonly considered as the main isoform facilitating water splitting, whereas PsbO2 is believed to be involved in PSII repair process (replacement of photodamaged D1 subunit). This work focuses on particular roles of Arabidopsis PsbO isoforms in maintaining photosynthesis with special focus on response to light stress. Mutants psbo1, psbo2 and wild type plants Col-0 were used for extensive biochemical investigation. Our aim was to find out what is the impact on overall thylakoid structure and composition in mutants. Furthermore, to investigate response to light stress in wild type regarding to yields of particular subcompartments, changes in photosystem II...
Proteomic and functional characterization of PsbO isoforms
Duchoslav, Miloš ; Fischer, Lukáš (advisor) ; Hála, Michal (referee)
PsbO (manganese-stabilizing protein) is the largest extrinsic protein of photosystem II, located on the lumen side of photosystem. It is present in all known oxyphototrophic organisms. PsbO facilitates photosynthetic water splitting, which takes place in an oxygen evolving center (Mn4CaO5 cluster) of photosystem II. This work is focused on PsbO of higher plants and its isoforms, particularly their evolution and functions. Bioinformatic analyses revealed that majority of higher plants express exactly two psbO isoforms. A phylogenetic tree of PsbO sequences has an unusual topology. The two paralogous isoforms do not diverge at the base of the phylogenetic tree, as anticipated, but rather at the end of particular branches, at the level of family or lower taxonomic unit. In this work we propose and discuss several hypotheses concerning evolution of PsbO isoforms. The work further includes detailed analysis and identification of protein spots assigned to PsbO on 2D IEF-SDS PAGE gels of potato thylakoid proteins. We identified predominant version of PsbO isoform in most of the spots. We did not succeed to find any posttranslational modification. We optimized a method of psbO expression in E. coli and subsequent purification, which yielded relatively big amount of properly folded recombinant protein. Analysis of...
The role of manganese-stabilizing protein of photosystem II
Duchoslav, Miloš ; Rothová, Olga (referee) ; Fischer, Lukáš (advisor)
Miloš Duchoslav The role of manganese-stabilizing protein of photosystem II Abstract The appearance of oxygenic photosynthesis was a key event in the evolution of life on the Earth. All molecular oxygen in the atmosphere likely comes from a water-splitting reaction catalysed by the oxygen-evolving center of photosystem II. Photosystem II - a multisubunit protein-cofactor complex with a phylogeneticaly highly conserved structure - is embedded in the thylakoid membrane of chloroplasts and cyanobacteria. The mechanism of the photosynthetic water-splitting reaction, which occurs on the manganese cluster, has been widely investigated; however, it has not yet been fully understood. An essential role in the stabilization of the manganese cluster and in the facilitation of oxygen evolution is played by photosystem II extrinsic proteins that occur in thylakoid lumen. The most important among them is a manganese-stabilizing protein (MSP) that is present in all known oxyphototrophs. This protein is believed to have many functions: besides stabilizing the manganese cluster, it is also carbonic anhydrase activity, GTPase activity and regulation of the turnover of the D1 protein. The functions of the MSP are probably regulated through changes in its dynamic structure. The MSP is likely to take part in the regulation of...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.